If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+20b+50=0
a = 1; b = 20; c = +50;
Δ = b2-4ac
Δ = 202-4·1·50
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{2}}{2*1}=\frac{-20-10\sqrt{2}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{2}}{2*1}=\frac{-20+10\sqrt{2}}{2} $
| 3/2(x-2)-5=9 | | 10x+12=20x-8 | | 7x+9-4x=-24 | | 3/7/x=2/7/(3/5-x) | | 2x+19=7×/3+5 | | -7-3(4-8n)=173 | | 2x-3x-4x=2(x+1) | | 13x-7=15x-13 | | 6(x−1)=2x+10 | | -6r+2=-16-6r | | 20=4g | | 6x+8=7-(9x-7) | | 2(5x-8)+2(3x3)=x | | X=0.75x-1.75+2/x | | 3x-4(6x+1)=15 | | 27-6d=7=+4d | | 6x-2=3=2x | | 14=6a-8=18 | | 12/a-7=-1 | | 60x+170=940 | | 10-2b+12=4 | | 0.60x+0.05(10-x)=0.10(49) | | 4(0.5f−0.25)=6+f4(0.5f−0.25)=6+f | | 3x2=48 | | 60+7w=120+5w | | 36=216^n | | 0.6r=1.6 | | 1/4(3m+4)-1/5=1/4m+3/10 | | 12.66=2g+3.74 | | 7(3y-5)=7+7y | | 9=5w+4 | | 100+m=1 |